Unclosed HIV-1 capsids suggest a curled sheet model of assembly.

نویسندگان

  • Zhiheng Yu
  • Megan J Dobro
  • Cora L Woodward
  • Artem Levandovsky
  • Cindy M Danielson
  • Virginie Sandrin
  • Jiong Shi
  • Christopher Aiken
  • Roya Zandi
  • Thomas J Hope
  • Grant J Jensen
چکیده

The RNA genome of retroviruses is encased within a protein capsid. To gather insight into the assembly and function of this capsid, we used electron cryotomography to image human immunodeficiency virus (HIV) and equine infectious anemia virus (EIAV) particles. While the majority of viral cores appeared closed, a variety of unclosed structures including rolled sheets, extra flaps, and cores with holes in the tip were also seen. Simulations of nonequilibrium growth of elastic sheets recapitulated each of these aberrations and further predicted the occasional presence of seams, for which tentative evidence was also found within the cryotomograms. To test the integrity of viral capsids in vivo, we observed that ~25% of cytoplasmic HIV complexes captured by TRIM5α had holes large enough to allow internal green fluorescent protein (GFP) molecules to escape. Together, these findings suggest that HIV assembly at least sometimes involves the union in space of two edges of a curling sheet and results in a substantial number of unclosed forms.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Conservation of a stepwise, energy-sensitive pathway involving HP68 for assembly of primate lentivirus capsids in cells.

Previously we have described a stepwise, energy-dependent pathway for human immunodeficiency virus type 1 (HIV-1) capsid assembly in a cell-free system. In this pathway, Gag polypeptides utilize the cellular factor HP68 and assemble into immature capsids by way of assembly intermediates that have defined biochemical characteristics. Here we address whether this pathway is universally conserved ...

متن کامل

A Multistep, ATP-dependent Pathway for Assembly of Human Immunodeficiency Virus Capsids in a Cell-free System

To understand the mechanism by which human immunodeficiency virus type 1 (HIV) capsids are formed, we have reconstituted the assembly of immature HIV capsids de novo in a cell-free system. Capsid authenticity is established by multiple biochemical and morphologic criteria. Known features of the assembly process are closely reproduced, indicating the fidelity of the cell-free reaction. Assembly ...

متن کامل

Structure of Full-Length HIV-1 CA: A Model for the Mature Capsid Lattice

The capsids of mature retroviruses perform the essential function of organizing the viral genome for efficient replication. These capsids are modeled as fullerene structures composed of closed hexameric arrays of the viral CA protein, but a high-resolution structure of the lattice has remained elusive. A three-dimensional map of two-dimensional crystals of the R18L mutant of HIV-1 CA was derive...

متن کامل

Role of dynamic capsomere supply for viral capsid self-assembly.

Many viruses rely on the self-assembly of their capsids to protect and transport their genomic material. For many viral systems, in particular for human viruses like hepatitis B, adeno or human immunodeficiency virus, that lead to persistent infections, capsomeres are continuously produced in the cytoplasm of the host cell while completed capsids exit the cell for a new round of infection. Here...

متن کامل

Effect of mutations in Gag on assembly of immature human immunodeficiency virus type 1 capsids in a cell-free system.

Studies of HIV-1 capsid formation in a cell-free system revealed that capsid assembly occurs via an ordered series of assembly intermediates and requires host machinery. Here we use this system to examine 12 mutations in HIV-1 Gag that others studied previously in intact cells. With respect to capsid formation, these mutations generally produced the same phenotype in the cell-free system as in ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of molecular biology

دوره 425 1  شماره 

صفحات  -

تاریخ انتشار 2013